If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2+14x-370=0
a = 14; b = 14; c = -370;
Δ = b2-4ac
Δ = 142-4·14·(-370)
Δ = 20916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20916}=\sqrt{36*581}=\sqrt{36}*\sqrt{581}=6\sqrt{581}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{581}}{2*14}=\frac{-14-6\sqrt{581}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{581}}{2*14}=\frac{-14+6\sqrt{581}}{28} $
| 11x+5=120° | | 4(2x-5)=8+x | | x−70=138 | | r+94=3 | | 6n+7=36-4n | | -6x+7=2-x | | 11x2=8x+26 | | 1/x=328.32 | | 600=12+14y | | x+1510=25 | | 4(4x-6)=2(8x12) | | −12x+2=-9x+5 | | 17x15=17x3x | | 2h+3(h+4)=3+4(h+2) | | Y+17=12-2x | | 27x+14=500 | | 3(n+6)=5(2+n) | | -2y+3=-4/9y-2/3-1/3y | | 4(q-8)=20q | | d+80+50=180 | | 5e-3=3e+9 | | -7=4(p-6)-3p | | 2x×3x×7=240 | | -2u+(1)=-13 | | 63+54+r=180 | | 63+54+r=180 | | -2u+(1)=-13 | | 8-5(4z-3)=13 | | -10+4(3v+15)=2 | | 1/22/3e–3+2e=–41/8e+1–e | | 11+k-4=8-23 | | 3z-2=126 |